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Abstract—Steady-state temperature solutions are sought for an infinite cubical array of spheres. Heat
transfer is by conduction and constant properties are assumed. The problem is treated as a unit cube
containing a sphere at the center. Due to symmetry the cube is further subdivided into a wedge representing
the unit cell. Applying continuity and boundary conditions, the analytical temperature solutions are
obtained. For the case in which the sphere is assumed to represent porosity in a solid, a porosity correction to

thermal conductivity is obtained in the form:

fp)=e 2% 00 <p<030
=092 —134p 030 <p <0.50

where p = fractional porosity

f{p) = porosity correction factor, f(p) < 1.

NOMENCLATURE

Al,, A2%7, A3, coefficients of the

spherical harmonics of components of

the outer boundary condition ;

13 C) coefficients of the series for the tempera-

ture solution in the sphere;

C@, €3, €, €, coefficients of the series for the
temperature solution in the cube;

E(p), F(1:), G{¢), eigenfunction solution to Laplace’s

equation in the spherical coordinate

system;

A%o, Asp,

&, &, unit vectors in the x- and z-directions;

€, &5, €4, unit vectors in the p-, a- and ¢-
directions;

f), porosity correction factor for fractional

porosity p;

HY (4, ¢), HD (1, ¢), HOl(u, ¢), HOu, ¢),
components of the outer-boundary con-
dition defined for the top, outer side,
and bottom faces of the unit cell;

k, k., conductivities of the sphere and cube
materials of the unit cell;

k,, conductivity of a porous material with
fractional porosity p;

kio00s conductivity of 100% dense material;

k, I, m, n, summation indices;

iy, unit vector normal to the side face;

e (u), associated Legendre functions of degree
n and order m;
q", heat flux vector;

* Present Address: Battelle Pacific Northwest Labora-
tories, Richland, WA 99352, US.A.

HMT 24:7 - A

qr heat flux crossing the top face;

qr average heat flux on the top face;

R, halflength of a side of the cubic unitcell;

R, radius of the sphere;

R, non-dimensional sphere radius (=
RJ/R.);

S, pitch between centers of cubic unit cell
@R, = §);

T{(p, u, ¢), non-dimensional temperature;

T{p, i, ¢), non-dimensional temperature field
within the sphere;
Tdp, &, ¢), non-dimensional temperature field

within the cube but outside the sphere;

Tr, Tg, non-dimensional boundary tempera-
tures on the top and bottom faces,
respectively;

X, ¥, 2, independent variables for a rectangular
coordinate system with origin at the
sphere center;

D, &, independent variables for a spherical
coordina.e system with origin at the
sphere center;

7N = cosa;

B, v, summation indices;

v, gradient operator;

V2, laplacian operator.

1. INTRODUCTION

SoLip materials commonly contain inclusions of a
second dissimilar phase. When a temperature gradient
is applied, these inclusions perturb the flow of heat
through the material. If the inclusions are gas filled
pores, they may significantly alter the thermal
performance.
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In this study the conduction of heat through a
material with an idealized arrangement of inclusions is
examined. It is assumed that the inclusions are spheri-
cal and ordered in a regular simple cubical array
throughout the medium. Constant thermal properties
are assigned to both the spheres and the remaining
solid. Explicit analytical expressions are sought for the
temperature distribution within a characteristic unit
cell. A correction factor for the thermal conductivity of
the solid, which accounts for the presence of the
porosity, is then found from the solutions. This
correction formula is compared with other expressions
found in the literature.

2. TEMPERATURE SOLUTIONS

2.1. Unit cell and boundary conditions

If the heat flow through the medium is normal to the
pitch between sphere centers of adjacent nearest
neighbors, it is possible to consider a single plane of
spheres, shown in Fig. 1(a), which can be reduced
further to a cube containing a single sphere, Fig. 1(b).
Due to symmetry the side faces of the cube are
adiabatic and the top and bottom faces are taken to be
known uniform temperatures.

The governing equations are written in terms of
non-dimensional quantities for temperature and pos-
ition. The temperature is unity on the top boundary
and zero on the bottom boundary.

Due to symmetry the cube and sphere can be
subdivided further into eight 45° wedges [Fig. 1(c)].
The top and bottom faces retain the boundary con-
ditions T, and T, while all side faces are adiabatic. In
this unit cell, as shown in Fig. 2, spherical and
rectangular coordinate systems are located at the
center. In the solutions discussed below, the term
“cube” will be used to designate the region in the unit
cell outside the sphere.

The applicable boundary conditions for the prob-
lem are:

finite temperature at all points;

continuity of temperature at the sphere—cube

interface;

continuity of heat flux at the sphere—cube interface;

all three side-faces are adiabatic;

The conditions on the top, bottom and outer side faces
are recognized to be three components to the same
boundary condition.

The adiabatic boundary condition requires that the
component of the heat flux normal to the surface be
zero, and may be stated as

ﬁi'q”(pvav(p) s =0 (1)

where i, is the normal to the ith surface, S;, and q” (p, a,
¢) is the heat flux vector.

2.2. General form of temperature solution

For constant properties and no internal heat source,
steady-state heat conduction within the unit cell is
governed by Laplace’s equation
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|_—Unit Cell
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F1G. 1. Development of the unit cell : (a) repeating horizontal
plane of spheres; (b) single sphere centered within a cube; (c)
central sphere in an array with the unit cell defined.

10/(,0 1 oT
VT = (0" — )+ 5 —| (1 = p)
p*dp (p 5:) p* ou [( g )5u]

1 orT
MDY TR T Y i
pl — u*) 8¢

where u = cos a (Fig. 2), T and p are non-dimensional
temperatures and positions in the unit cell. The
normalized dimensions are chosen such that the half
length of a cube side, or pitch, is unity;ie. S/2 = 1.
The solution to equation (2) may be represented

term by term with an eigenfunction solution of the
form [1]

@)

T(p,p,¢) = E(p) F(u) G(9). (3)

The specific solution for the temperature in the sphere
may be obtained by requiring finite temperatures in
the cell and specifying that the ¢ = 0 and ¢ = n/4 faces
are adiabatic.

L X [n/4]
T d) = C+ Y 5
n=1 m=0

x Cil p" PA™ () cos (4 mg).  (4)

In the cube, the solution is

Tp, 1, ) = CG8 + C&/p + X
n=1

[n/4]

x Y ACR P+ Cp™ Y
m=0

x P (u) cos (4m ¢) (5)
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where [n/4] is the largest integer in n/4 and the C’s are
coefficients which must be determined through appli-
cation of the remaining boundary conditions. P3™ (u)
is the associated Legendre function of degree n and
order 4m.

2.3. Application of boundary conditions
Since the temperature solution is expressed as a

linear combination of eigenfunctions, the orthogon-
ality property may be used to determine the coef-
ficients. At the sphere-cube interface, p = R/R, =
R,(R, is the radius of the sphere), continuity of
temperature from equations (4) and (5) can be ex-
pressed as

oo [n/4]
CHy+ Y. 3 Cid RLPR™ (u)cos (4m @)

n=1 m=0

©  [n/4)

=CH+ C/R, + ¥ Y n(CRR;

n=1m=0
+ Cod R " 1HPR™ (u) cos (4m ). (©6)

The boundary condition of continuity of heat flux at
the sphere—cube interface, p = R, yields the
expression

© (/4]
k Y Y. nCl RI™! P () cos (4mg)

n=1 m=0
x [n/4]
=—k{-CG/R: + ¥ ¥ [nCRR!

n=1m=0

= (n+1) CIR " *] Py™ (u) cos (4me)}  (7)

Cube — F— Sphere

X €|

K = cosa

F1G. 2. Unit cell with coordinate system.
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where k, and k, are the thermal conductivities of the
sphere and cube materials, respectively.

Exploiting the orthogonality properties for the
cosine and associated Legendre functions [2], equa-
tions (6) and (7) can be combined in a straightforward
way to produce four algebraic equations which may be
used in determining the arbitrary coefficients, C*!!, C*)
and C¥

Chs = €& + CEY/R, (8a)
CWRy=CR R, + CRR'™H (8b)
CH=0..CY=CP (8c)

kICR R = k(ICP Ry
—(+DCRR'TY. (8d)

The remaining boundary condition is composed of
three components, one each from the top face, the
outer side face (x = R_), and the bottom face. This
yields the additional necessary equations to fully
determine the coefficients in the temperature solutions.
The normalized temperature on the top face is T(p, u,
¢) = 1. This is valid for the top face which is defined by
the following relations

1

p=— <[1S1
u

Ot g =
and 0 < ¢ < n/4.

The boundary condition here can then be expressed as

@ o  [n/4] @ 1 n o
1=C00+Z Z Cnm; Pn (ﬂ)

n=1 m=0

x cos (4mep) + C e)_"_lP‘:'” (1) cos (4m¢)]-
©)

The side face, x = R, is adiabatic. This face is
defined by the relationships

1 -1
P = cos g1 — 1)1 2+tan? §)' 2
1
P — < ¢ < n/a
<p< QT tan? §)' 7 and 0 < ¢ < n/4

The adiabatic condition on this face is expressed as
éx .q" = éx . ['—chTs(p’ Hu, ¢)] =0 (10)

where &, is the unit vector normal to the side face.

To apply this condition, the definition of the gra-
dient operator is inserted into equation (10). This
yields

o . , 0
€5 ° "= x _kc _Tc s
q e{ [e”ap (o, 1. @)
.10
+ € — Tc(p’ i, ¢)
p Oa

. 1 0
é T
¢psina6¢

Tp, 1 ¢)]}- (11)
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The dot products of the unit vectors are computed to
be

& €, =sina-cos¢
é,'e =Ccosa-coso (12)
& e, = —sing.

Recalling that 4 = cos a, the adiabatic condition on
the side face may be written as

% [n/4] c@
0= ——
Z Z {COS"_I ¢(1 —/12)"/2

n=1_m=0
x [(nP;""(u) (n+4m)p P () sin ¢}
x cos (4me) cos + 4mP;™(u) sin (4mg)

cg
cos—n—Z ¢(1 _uZ)(-n—UZ)

+
(13)

X [((#2(2n +1)=(n+D))Pim(w) — (n+4muPy2 (1))

x cos (4me) cos ¢ +4mPE™(u) sin (4me) sin d)]}

On the bottom face, the normalized temperature is
T«(p, 4, ) = 0. The bottom plane is defined by

-1 1
=— for —-1gspuy<————>
F= H= 24tan? ¢y 2

and 0<¢<n/4

Substituting p = —1/u, the condition may then be

expressed as

B+3 Y [c;i:( Hrtrw

n=1m=0
_ -n—-1
x cos (4dm¢p) + C3) <Tl> Py™(u) cos (4m¢):].

(14)

As mentioned above, the conditions on the top,
outer side and bottom fices, equations (9), (13) and
(14), constitute three components of one boundary
condition. A general form of the boundary condition
given by equations (9), (13) and (14) is recognized to be

H® (u, ¢) = CERHY (1, ¢)

o [n/4]

+2 X

n=1 m=0

[Cﬁif HY) () + COLHS) (u, ¢)]
(15)

where HY, H®, H® and H*) are defined separately
for each face [1].

To complete the solution for the coefficients C® and
C™, it is necessary to reduce equation (15) to a system
of linear equations in terms of C§3 and C'%) only. This s
done by first expanding each of the four H functions in
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spherical harmonics.* By again using the orthogon-
ality properties of spherical harmonics and through
algebraic manipulation, C{2) and C3) can be de-
termined in terms of C{%)

O - cw k(n+1) + kn

nm nm kc(2n+ 1) (16)
C(3) _ C;}n) (l _ks/kc) nR§"+1

- 2n+1

The spherical harmonic expansions and expressions

for C2) and C¥) are inserted into equation (15) along

with C§} = C§4. With a final use of orthogonality,

the following set of linear algebraic equations results
x  [n/4]

k(n+1)+kn
o C) | gomm (2T T AT
Aly,,Co& + ngl ",Z::o{ nm [ m ( kr(2n+1) )

A3"™ (1 —kyk )JnR3"*1
+ m ( 2n-+/- l)n :l} = A4,,
(17

Equation (17) is the defining system for the solution of
the coefficients C§J and C.). An upper limit is chosen
for the series summation on index n. This defines the
number of terms to be used in temperature solutions.
Once the coefficients C§J and C{%) are known, it is then
possible to determine the coefficients C§) (equation
8c), C2@ and C'3 (equation 16), thus providing the
coefficients necessary to evaluate the solutions for the
temperature profiles within the sphere and the cube
from equation (4) and (5).

3. TEMPERATURE SOLUTIONS AND POROSITY
CORRECTION MODELS

The temperature distribution within a cube contain-
ing a sphere has been calculated using the solutions
outlined above. Top and bottom normalized boun-
dary conditions are 1 and 0, respectively. The sphere,
representing a pore, is filled with gas with a small
conductivity. Seven terms are kept in the solution
series. In Fig. 3(a), the temperature field along the ¢ =
Ofaceis shown. As would be expected, it is seen that the
pore acts as an obstruction which causes three dimen-
sional heat flow through the unit cell.

In Fig. 3(b), the temperatures and heat flux magni-
tudes on the top face are shown: As noted earlier, the
temperature on this face is a boundary condition
which was specified to be 1. Figure 3(b) gives an
indication of error in the series solution for
temperature.

To account for the presence of pores, it is customary
to define a porosity correction factor which modifies
the thermal conductivity of the 1009, dense solid. This
is usually expressed as

ky = k100 "f(P) (18)

* For example:

HL) (u, ¢) =

x |a/4]

AT+ Y Y A3y PR (u) cos (4y).
g=1 y=0
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FIG. 3a. Temperature field.

0.956

[ ]
0.0324

Normalized Temperature 0.5164 0.9'62

*

Heat Flux 0.0342 0.0337

0.972 0969 0971

* . L]
0.0346 0.0348 0.0349

0.983 0.977 0976 0.980

® \ L ] [ ] L ]
0‘0329\\0.0342 0.0351 0.0359

\
0997 0989 0984 0982 0987
0.0290 0.0315 0.03\36 0.0353 0.0366
\

1.0t 1.003 0.995 0988 0.987 0.993

[ . ) e [ ()
0.0241 0.0269 0.0302 0.033|‘\ 0.0353 0.0370

\

1.0l6 1.013 1.006 0997 0990 ' 0988 0.994
[ ] L] . L[] L[] \ L] .
00218 0.0230 0.026/ 0.0297 0.0329 00353 0.0371

F1G. 3b. Normalized dimensions and normalized tempera-
tures in the top face of the unit cell.

where: k, = conductivity of the porous material ; koo
= conductivity of 100% dense material; f(p) =
porosity correction for fractional porosity p.

The derivation in Section 2 can be used to find a
porosity correction formula by determining the effec-
tive thermal conductivity of the unit cell from the
analytical temperature solution. The heat flux crossing
the top face of the unit cell is defined as

gy = — & [ kVT(p,n, )]

Top Face

(19)
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The average heat flux over the top face is determined
by

I = _f trqrds
T ITF dS

where {1 ds is the integral over the top face.
The effective thermal conductivity for the unit cell
may now be defined as

ky =|qr| - SATr — Ty)

where k,, is the effective thermal conductivity.

By comparing the results from equation (21) to the
conductivity of the 100%, dense solid it is possible to
derive a porosity correction formula as a function of
the fractional volumetric porosity, p. The resulting
expression is [3]

f(p)=e"21* 0<p<030
f(p) =092 — 1.34p 0.30 < p < 0.50.

(20)

(21)

(22)

The porosity correction formula in equation (22)
can be compared with other corrections obtained by
several independent approaches. In the first suggestion
for a porosity correction formula, the conductivity was
modified by the ratio of the actual density to the
maximum theoretical density [4]. This is known as
Loeb’s equation

fp)=1-p (23)

However, Loeb’s formula generally underpredicts the
effect of porosity [5].

Kampf and Karsten [6] have developed an analyti-
cal correction in which a cubical pore is located in the
center of a cube of a different material. Heat is assumed
to flow in one direction only with no heat flow around
the pore. A pore tube is oriented along the direction of
the heat flow. By summing resistances to heat flow and
averaging over the cross sectional area of the unit cell,
the porosity correction formula obtained is

flpy=1-p*~ (24)

This approach has been extended by Peddicord [7] for
the case of a spherical pore situated in a cubical unit
cell consisting of 100%, dense material. Using a similar
analysis, the porosity correction formula found is

1/2\2/3
fipy=1- <3n4 > p*".

25)

In both cases, equations (24} and (25), only one-
dimensional heat flow was permitted.

The second approach has been to experimentally
measure the conductivity of materials with known
porosity. From the data, empirical expressions for
correction formulas have been derived. Normally,
these are assumed to be valid in the range of 0-12%,
porosity. The modified Loeb’s formula [8, 9] is given
by

f)=1—ap (26)
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in which o usually varies between 1.7 and 2.5. The
Maxwell-Eucken formula [10], another empirical
expression, is given as

1—p
1+ fp

where f is between 0.5 and 1.5. Finally, in measure-
ments of 304L stainless steel Rigimesh, 304L stainless
steel sintered powders and oxygen free high-
conductivity copper sintered powders, Koh and For-
tini [11] have reported good agreement with the
expression

flp) = 27

1-p

—_—. 28
1+ 11p? (28)

flp)=

In Figs. 4 and 5, the porosity correction derived in
this paper [equation (22)] is compared with other
porosity correction formulas. In Fig. 4, equation (22),
the one-dimensional analytical corrections given by
equations (24) and (25), and the Koh-Fortini ex-
pression, [equation (28)] are shown in relation to the
modified Loeb equation (for 1.7 < a < 2.5). Figure 5
makes a similar comparison but for the
Maxwell-Eucken correction [equation (27)]. It is
noted that in both cases the analytical derivations,
which do not account for multidimensional heat flow,
significantly overpredict the effect of the pores.
Also in both cases, the results from equation (22) are
seen to fall within the band represented by the range of
parameters in both empirical expressions. This is
attributed to the development of equation (22) being
based on multidimensional heat flow. The Koh-
Fortini correction slightly underpredicts the effect

1.00 T T T T T
N
S a3
" ~. Modified Loeb, Eq. (26)
R N (1.7<a<2.5)
N N\,
N \Y
- N N
2 090 N q ~
T SN Y
] \\
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° N\
[=] N
e
8 X
° N
g
t 080F S
© ~
>
.; ~
o <
S
a
— — This Paper - Eq {22)
— —~— Kampf and Karsten-Eq.(24)
e Peddicord - Eq. (25)
070~ . Koh and Fortini - Eq.(28)
L ] 1 ] 1
0.00 0.02 .04 006 0.08 .10 .12

Fractional Porosity - p

F1G. 4. Comparison of several porosity correction formulas
with the modified Loeb expression.
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0.00 0.02 0.04 0.06 .08 Q.10 0.12
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F16. 5. Comparison of several porosity correction formulas
with the Maxwell-Eucken expression.

of porosity in this range. In addition, an artifact of
the representation in equation (28) results in a curve
with slope of increasing absolute value. All other
porosity correction formulas examined, both empiri-
cal and analytical, had slopes either constant or
decreasing in magnitude.

It is often necessary to estimate the thermal con-
ductivity in materials with porosities greater than 129,
Figure 6 compares equation (22) with the analytical
correction formulas at higher porosities. It is noted
that for very porous materials, the equation derived in
this paper eventually approaches the one-dimensional
analytical derivation for a spherical pore given by
Peddicord [7]. Within the context of the unit cell
representation, this indicates that as the pore becomes
very large the heat cannot flow as readily around the
pore and the problem is well approximated by the
one-dimensional approach. At high porosities, how-
ever, equation (22) yields higher conductivities than
the Koh—Fortini model, equation (28).

4. CONCLUSIONS

In this paper the three-dimensional analytical tem-
perature solutions for a sphere occupying a cubical
unit cell are presented in detail. A derived porosity
correction formula generally shows good agreement
with empirical expressions. In addition, the formula
derived here may be used to estimate thermal con-
ductivities at higher porosities beyond the range of
validity of most empirical expressions.
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CONDUCTION THERMIQUE DANS DES SPHERES ASSEMBLEES EN UN ARRANGEMENT
CUBIQUE REGULIER ET INFINI

Résumé — Les solutions permanentes des températures sont considérées pour un arrangement cubique de
sphéres. On suppose que le transfert de chaleur est par conduction et que les propriétés physiques sont
constantes. Le probléme est traité pour un cube unitaire contenant une sphére au centre. Du fait de la
symétrie, le cube est subdivisé en un diédre représentant la celiule unitaire. La solution analytique est obtenue
pour la température en appliquant les conditions de continuité aux limites. Dans le cas ou les sphéres
représenteraient la porosité dans un solide, on obtiendrait une correction pour la conductivité thermique
sous la forme

fp)=e " 214r 0<p<030
=092 -134p 030 <p<0,5
ou
p= porosite,
f(p) = facteur de correction de porosité, f(p) < 1.

WARMELEITUNG EINER UNENDLICHEN REGELMASSIG ANGEORDNETEN KUBISCHEN
KUGELPACKUNG

Zusammenfassung — Es werden Losungen fiir die Temperaturverteilung einer unendlichen kubischen
Kugelpackung im stationdren Fall gesucht. Der Warmetransport erfolgt durch Leitung; die Stoffwerte
werden als konstant vorausgesetzt. Das Problem wird wie ein Einheitswiirfel mit einer Kugel im Mittelpunkt
behandelt. Aus Symmetriegriinden wird der Wiirfel weiter in einen Keil unterteilt, der die Einheitszelle
darstellt. Durch die Anwendung von Kontinuitdts- und Randbedingungen werden die analytischen
Losungen fiir die Temperaturverteilung erhalten. Fiir den Fall, daB die Kugel einen Hohlraum innerhalb
eines Festkorpers darstellt, wird ein Porositatskorrekturfaktor der Warmeleitfahigkeit in der folgenden
Form erhalten:
fp)=e"21%?; 00 <p <030
=092 — 1,34p; 0,30 < p <0,50.

Dabei ist p das Porosititsverhaltnis und f(p) der Porositits-Korrekturfaktor, wobei f(p) < 1 gilt.
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TEMJIONPOBOAHOCTb BECKOHEYHOW KYBUYECKOW OBJIACTH,
COCTOSILEN U3 COEP

Annotaunn — [TosyueHb! pelueHHs 3ada4H O TeMmepaTtype Ans OeckoHewHoW kybmueckoil obnactw,
cocTosieil u3 chep. TensonepeHoC OCYIIECTBAAETCS TEMIONPOBOAHOCTBIO H CBOHMCTBA CYHTAIOTCH
NOCTOSHHBIMH. B 3anade paccMaTpHBaeTcs eAMHMYHBIH kY0, conepxaumit chepy. B cuny cummerpun
Ky6 nanee noapassenseTcs Ha KJIHH, NPEACTaBARIOIIKHA coOON eAMHMYHYIO SYEHKY. AHaNHTHYECKHe
pellieHHs TS TEMIEPaTypbl NOJNYYEHbl NYTEM HCNOJIbL3OBAHHS YCJIOBHA CIUIOIIHOCTH M IPaHHYHBIX
ycnoBuii. Ins ciayyas, koraa chepa npeiactasiseT cobol NOPUCTYIO fYeiKy B TBEPIOM Tejle, N0NY4EHO
COOTHOILIEHHE MEXAY NOPHCTOCTBIO U TENJIONPOBOJHOCTHIO, UMEIOLIEE BHI

f(p=e" 2% 0.0<p<0.30
—0.92—1.34p 0.30 < p <0.50

rie  p — KOHLEHTpauus nop
f(p) — nonpasouHblil KO3QPULHEHT, YUHTHIBAIOLIMI NOPHCTOCTL f(p) < |



