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Abstract-Steady-state temperature solutions are sought for an infinite cubical array of spheres. Heat 
transfer is by conduction and constant properties are assumed. The problem is treated as a unit cube 
containing a sphere at the center. Due to symmetry the cube is further subdivided into x wedge representing 
the unit cell. Applying continuity and boundary conditions, the analytical temperature solutions are 
obtained. For the case in which the sphere is assumed to represent porosity in a solid, a porosity correction to 
thermal conductivity is obtained in the form : 

where p = fractional porosity 

j(p) = e-2.14P 0.0 < p c 0.30 

= 0.92 - 1.34.p 0.30 < p < 0.50 

f(p) = porosity correction factor&p) 5 1. 

NOMENCLATURE 

‘4% , Af$‘, Al,, A27, A3;:, coeficients of the 
spherical harmonics of components of 
the outer boundary condition ; 

a% G2, coefficients of the series for the tempera- 
ture solution in the sphere; 

C&2, C$, Cj$, CL:,“,‘, coefficients of the series for the 
temperature solution in the cube; 

E(p), F&), G(#), eigenf~~tion solution to Laplace’s 
equation in the spherical coordinate 
system ; 

I * 
e,, e,, unit vectors in the x- and z-directions; 

$0, i, 5, unit vectors in the p-, c(- and fb- 
directions; 

.ftp)t porosity correction factor for fractional 
porosity p; 

k,, kc, 

k P’ 

k 1009 
k, 1, m, n, 
* 
4, 

P: (I45 

components of the outer-boundary con- 
dition defined for the top, outer side, 
and bottom faces of the unit cell; 
conductivities of the sphere and cube 
materials of the unit cell; 
conductivity of a porous material with 
fractional porosity p; 
conductivity of lOOo/, dense material; 
summation indices; 
unit vector normal to the side face ; 
associated Legendre functions of degree 
n and order m; 
heat flux vector; 

* Present Address: Battelle Pacific Northwest Labora- 
tories, Richland, WA 99352, U.S.A. 

heat flux crossing the top face; 

average heat flux on the top face; 
half length of a side of the cubic unit cell ; 
radius of the sphere; 
non-dimensional sphere radius (= 

WKI; 
pitch between centers of cubic unit cell 
(2R, = S); 

T(p, p, #), non-dimensional temperature; 
T,(p, p, 4), non-dimensional temperature field 

within the sphere; 
T,(p, B, 4), non-dimensional temperature field 

T,, T,, 

.% y, 2, 

P, @, 4, 

;:,, 
v, 
V2, 

within the cube but outside the sphere; 
non-dimensional boundary tempera- 
tures on the top and bottom faces, 
respectively; 
independent variables for a rectangular 
coordinate system with origin at the 
sphere center ; 
inde~ndent variables for a spherical 
coordinate system with origin at the 
sphere center ; 
= cos a; 
summation indices ; 
gradient operator ; 
laplacian operator. 

1. INTRODUCTION 

SOLID materials commonly contain inclusions of a 
second dissimilar phase. When a temperature gradient 
is applied, these inclusions perturb the flow of heat 
through the material. If the inclusions are gas filled 
pores, they may significantly alter the thermal 
performance. 
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In this study the conduction of heat through a 

material with an idealized arrangement of inclusions is 
examined. It is assumed that the inclusions are spheri- 
cal and ordered in a regular simple cubical array 
throughout the medium. Constant thermal properties 
are assigned to both the spheres and the remaining 
solid. Explicit analytical expressions are sought for the 
temperature distribution within a characteristic unit 
cell. A correction factor for the thermal conductivity of 
the solid, which accounts for the presence of the 
porosity, is then found from the solutions. This 

correction formula is compared with other expressions 
found in the literature. 

2. TEMPERATURE SOLUTIONS 

2.1. Unit cell und boundary conditions 
If the heat flow through the medium is normal to the 

pitch between sphere centers of adjacent nearest 
neighbors, it is possible to consider a single plane of 
spheres, shown in Fig. l(a), which can be reduced 
further to a cube containing a single sphere, Fig. l(b). 
Due to symmetry the side faces of the cube are 
adiabatic and the top and bottom faces are taken to be 

known uniform temperatures. 
The governing equations are written in terms of 

non-dimensional quantities for temperature and pos- 
ition. The temperature is unity on the top boundary 
and zero on the bottom boundary. 

Due to symmetry the cube and sphere can be 
subdivided further into eight 45” wedges [Fig. l(c)]. 
The top and bottom faces retain the boundary con- 
ditions T, and T, while all side faces are adiabatic. In 
this unit cell, as shown in Fig. 2, spherical and 

rectangular coordinate systems are located at the 

center. In the solutions discussed below, the term 
“cube” will be used to designate the region in the unit 
cell outside the sphere. 

The applicable boundary conditions for the prob- 
lem are: 

finite temperature at all points; 
continuity of temperature at the sphere-cube 

interface ; 
continuity of heat flux at the sphere-cube interface; 
all three side-faces are adiabatic; 

The conditions on the top, bottom and outer side faces 
are recognized to be three components to the same 
boundary condition. 

The adiabatic boundary condition requires that the 
component of the heat flux normal to the surface be 
zero, and may be stated as 

i$.q”(p,a,c#l) = 0 
si 

(1) 

where iii is the normal to the ith surface, Si, and q” (p, a, 
4) is the heat flux vector. 

2.2. General form of temperature solution 
For constant properties and no internal heat source, 

steady-state heat conduction within the unit cell is 
governed by Laplace’s equation 

CD _-A.., 

__-- 
_--- ._ 

--. 

T 
f i-@r Unit Cell 

.I 

l--d--l 
FIG 1. Development of the unit cell : (a) repeating horizontal 
plane of spheres; (b) single sphere centered within a cube ; (c) 

central sphere in an array with the unit cell defined. 

1 ir2T 
-_=O 

+ p2(1 - p2) 842 
(2) 

where p = cos CI (Fig. 2), 7’ and p are non-dimensional 

temperatures and positions in the unit cell. The 
normalized dimensions are chosen such that the half 
length of a cube side, or pitch, is unity; i.e. S/2 = 1. 

The solution to equation (2) may be represented 
term by term with an eigenfunction solution of the 

form [l] 

VP, ~3 4) = E(P) F(P) G(4). (3) 

The specific solution for the temperature in the sphere 
may be obtained by requiring finite temperatures in 
the cell and specifying that the 4 = 0 and $J = n/4 faces 
are adiabatic. 

x CL; p” Pz” (p) cos (4 m4). (4) 

In the cube, the solution is 

m=O 

x Pz” (p) cos (4m 4) (5) 
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where [n/4] is the largest integer in n/4 and the c’s are 
coefficients which must be determined through appli- 
cation of the remaining boundary conditions. Pt”’ (p) 
is the associated Legendre function of degree n and 
order 4m. 

2.3. Application of boundary conditions 
Since the temperature solution is expressed as a 

linear combination of eigenfunctions, the orthogon- 
ality property may be used to determine the coef- 
ficients. At the sphere-cube interface, p = RJR, = 
RJR, is the radius of the sphere), continuity of 
temperature from equations (4) and (5) can be ex- 
pressed as 

= Cg’o’ + C&~/R, + c c n(C’iz Ri 
“=I m=O 

+ Ciz R,“-‘)c”’ (p) cos (4m 4). (6) 

The boundary condition of continuity of heat flux at 
the sphere-cube interface, p = R,, yields the 
expression 

zi In/41 

k, 1 1 n Cf,; Ri-’ P$’ (p) cos (4m4) 
“=I m=O 

= - k,{ -C$j/Ri + 1 c [nC!,f,! R:-’ 
“=I m=O 

- (n+ 1) C!,z R,“-2] Pz” (p) cos (4m4)) (7) 

Cube - 

Y 

FIG. 2. Unit cell with coordinate system. 

where k, and k, are the thermal conductivities of the 
sphere and cube materials, respectively. 

Exploiting the orthogonality properties for the 
cosine and associated Legendre functions [2], equa- 
tions (6) and (7) can be combined in a straightforward 
way to produce four algebraic equations which may be 
used in determining the arbitrary coefficients, C”‘, Ct2’ 
and Cc3) 

C$j = Cb’o’ + @d/R, (W 

Cl;‘R’ = Ci:‘R’ + CP’R-‘+ 1 0 (I 0 @b) 

cg”o’ = 0 ., cg_j = cb’o’ @cl 

k,lCI:’ R;- ’ = k,(lCjjf’ R;- 1 

-(i+ l)Cj:’ R,‘-2). (W 

The remaining boundary condition is composed of 
three components, one each from the top face, the 
outer side face (x = R,), and the bottom face. This 
yields the additional necessary equations to fully 
determine the coefficients in the temperature solutions. 
The normalized temperature on the top face is T,(p, p, 
$) = 1. This is valid for the top face which is defined by 
the following relations 

p=’ for 
P (2+ta;2$)l:2 2 !J 5 l 

and 0 I I#I I n/4. 

The boundary condition here can then be expressed as 

a b/41 

1=cgJ+ 1 c c$fJ ;nP:“(p) 
“=I m=O [ 0 

x cos (4m4) + Ciz i 
0 

-“-I 
em (PO cos (4m4) . P 1 

(9) 

The side face, x = R,, is adiabatic. This face is 
defined by the relationships 

1 
for 

-1 

p = cos &l -p2)l’2 (2+ tan’ 4)112 

1 

” ’ (2+tan’d)“’ 
and 0 < 4 I n/4. 

The adiabatic condition on this face is expressed as 

6, . q” = i, . [ - k,VT,(p, p, 4)] = 0 (10) 

where d, is the unit vector normal to the side face. 
TO apply this condition, the definition of the gra- 

dient operator is inserted into equation (10). This 
yields 

+ c,p- 
p sin a a& TAP, lb 4) II (11) 
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The dot products of the unit vectors are computed to spherical harmonics.* By again using the orthogon- 
be ality properties of spherical harmonics and through 

C, . Gp = sin a . cos 4 algebraic manipulation, C!,z and C!,z can be de- 
termined in terms of C!,!,j 

&_.e = cosa.cos$ (12) 
C’Z’ = C(l) 

( 

k,(n+ 1) + k,n 
6, . eB = - sin 4. nm “In 

k,(2n + 1) > 
Recalling that p = cos TV, the adiabatic condition on (16) 

the side face may be written as 
Cc3’ = C;: (1 -k&J nR,2” + ’ 

“In 
2n+l 

u. b/41 

o=c c n=lm=o COS”-l&-#2 i 

C’Z’ 

The spherical harmonic expansions and expressions 
for Ciz and Ciz are inserted into equation (15) along 

x 
L 

(nPt”(p) - (n f4m)p Pt!!l(p) sin 4 1 
x cos (4m4) cos + 4mPz”(p) sin (4~4) 

with C& = Cbi,$ With a final use of orthogonality, 
the following set of linear algebraic equations results 

C’3’ 

Al&J + ii ;$I {c:i [az:: (y(:~-3 

+ cos-n-2 ($(1~pyl’2’ 
(13) A3;; (1 - k,/k,)nR:“+ ’ 

x c + = A4,,. 

(($(2n+l)-(n+l))P?W - (n+4m)pPZ,(p)) 
2n+l II 

(17) 
L 

x cos (4m$) cos f$ + 4mPi”(p) sin (4m4) sin 4 11 . 
On the bottom face, the normalized temperature is 
T,(p, /*, 4) = 0. The bottom plane is defined by 

p = -’ for 
1 

-l<p< 
p (2 + tan’ &)l12 

and 0141x/4. 

Substituting p = -l/p, the condition may then be 
expressed as 

= [n/41 

x cos (4mgb) + Ciz 7 
( ! 

P:“(p) cos(4mqb) 1 . 
(14) 

As mentioned above, the conditions on the top, 
outer side and bottom fmes, equations (9), (13) and 
(14), constitute three cr,mponents of one boundary 
condition. A general form of the boundary condition 
given by equations (9), (13) and (14) is recognized to be 

m [n/41 

+ c c C%! Hi?,! C/1, 6) + Cc,“,, Hi?,! (IA 4) 
n=l m=O 1 

(15) 

where H(l), Hc2), Hc3) and Hc4) are defined separately 
for each face [I]. 

To complete the solution for the coefficients C”’ and 
Cc3), it is necessary to reduce equation (15) to a system 
of linear equations in terms of C$j and C!,z only. This is 
done by first expanding each of the four H functions in 

Equation (17) is the defining system for the solution of 
the coefficients C&j and C!,:. An upper limit is chosen 
for the series summation on index n. This defines the 
number of terms to be used in temperature solutions. 
Once the coefficients Cb,,j and Cb’,’ are known, it is then 
possible to determine the coefficients CL? (equation 
8c), C’kz and CL: (equation 16), thus providing the 
coefficients necessary to evaluate the solutions for the 
temperature profiles within the sphere and the cube 
from equation (4) and (5). 

3. TEMPERATURE SOLUTIONS AND POROSITY 
CORRECTION MODELS 

The temperature distribution within a cube contain- 
ing a sphere has been calculated using the solutions 
outlined above. Top and bottom normalized boun- 
dary conditions are 1 and 0, respectively. The sphere, 
representing a pore, is filled with gas with a small 
conductivity. Seven terms are kept in the solution 
series. In Fig. 3(a), the temperature field along the 4 = 
0 face is shown. As would be expected, it is seen that the 
pore acts as an obstruction which causes three dimen- 
sional heat flow through the unit cell. 

In Fig. 3(b), the temperatures and heat flux magni- 
tudes on the top face are shown As noted earlier, the 
temperature on this face is a boundary condition 
which was specified to be 1. Figure 3(b) gives an 
indication of error in the series solution for 
temperature. 

To account for the presence of pores, it is customary 
to define a porosity correction factor which modifies 
the thermal conductivity of the 100% dense solid. This 
is usually expressed as 

k, = kioo .f(~) (18) 

* For example : 
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FIG. 3a. Temperature field. 

Normalized Temperature 

Heat-Flux 

0.9p4 

0.0342 

0.962 

o&37 
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0.0;46 0.;346 0.0;49 
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0.0;2\9\,0.0;42 0.0;51 
\ 
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0.0;66 

\ 
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I.016 I.013 1.006 0.997 0.990 ; 0.966 
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FIG. 3b. Normalized dimensions and normalized 
tures in the top face of the unit cell. 
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0.0;71 

tempera- 

where: k, = conductivity of the porous material; kloo 
= conductivity of 100% dense material; f(p) = 
porosity correction for fractional porosity p. 

The derivation in Section 2 can be used to find a 
porosity correction formula by determining the effec- 
tive thermal conductivity of the unit cell from the 
analytical temperature solution. The heat flux crossing 
the top face of the unit cell is defined as 

q;= -~z~[-k,VWw,4)] . (19) 
Top Face 

The average heat flux over the top face is determined 

by 

s TF 4; ds 
& = JTFdS (20) 

where JTF ds is the integral over the top face. 
The effective thermal conductivity for the unit cell 

may now be defined as 

k, = 141 .S/(Tr - TB) (21) 

where k, is the effective thermal conductivity. 
By comparing the results from equation (21) to the 

conductivity of the 100% dense solid it is possible to 
derive a porosity correction formula as a function of 
the fractional volumetric porosity, p. The resulting 
expression is [3] 

f(p) = e-2.14P 0 I p < 0.30 
(22) 

f(p) = 0.92 - 1.34~ 0.30 I p I 0.50. 

The porosity correction formula in equation (22) 
can be compared with other corrections obtained by 
several independent approaches. In the first suggestion 
for a porosity correction formula, the conductivity was 
modified by the ratio of the actual density to the 
maximum theoretical density [4]. This is known as 
Loeb’s equation 

f(P) = 1 - P* (23) 

However, Loeb’s formula generally underpredicts the 
effect of porosity [5]. 

Kampf and Karsten [6] have developed an analyti- 
cal correction in which a cubical pore is located in the 
center of a cube of a different material. Heat is assumed 
to flow in one direction only with no heat flow around 
the pore. A pore tube is oriented along the direction of 
the heat flow. By summing resistances to heat flow and 
averaging over the cross sectional area of the unit cell, 
the porosity correction formula obtained is 

f(p) = 1 - p2’3. (24) 

This approach has been extended by Peddicord [7] for 
the case of a spherical pore situated in a cubical unit 
cell consisting of 100% dense material. Using a similar 
analysis, the porosity correction formula found is 

f(p) = 1 _ y 

c > 

2’3 p2’3, (25) 

In both cases, equations (24) and (25), only one- 
dimensional heat flow was permitted. 

The second approach has been to experimentally 
measure the conductivity of materials with known 
porosity. From the data, empirical expressions for 
correction formulas have been derived. Normally, 
these are assumed to be valid in the range of O-12% 
porosity. The modified Loeb’s formula [8, 91 is given 

by 

f(P) = 1 - CrP (26) 
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in which a usually varies between 1.7 and 2.5. The 
Maxwell-Eucken formula [lo], another empirical 
expression, is given as 

1-P 
f(P) = 1 + Bp (27) 

where fl is between 0.5 and 1.5. Finally, in measure- 
ments of 304L stainless steel Rigimesh, 304L stainless 
steel sintered powders and oxygen free high- 
conductivity copper sintered powders, Koh and For- 
tini [ll] have reported good agreement with the 
expression 

f(P) = &+. 
In Figs. 4 and 5, the porosity correction derived in 

this paper [equation (22)] is compared with other 
porosity correction formulas. In Fig. 4, equation (22), 
the one-dimensional analytical corrections given by 
equations (24) and (29, and the Koh-Fortini ex- 
pression, [equation (28)] are shown in relation to the 
modified Loeb equation (for 1.7 < a < 2.5). Figure 5 
makes a similar comparison but for the 
Maxwell-Eucken correction [equation (27)]. It is 
noted that in both cases the analytical derivations, 
which do not account for multidimensional heat flow, 
significantly overpredict the effect of the pores. 
Also in both cases, the results from equation (22) are 
seen to fall within the band represented by the range of 
parameters in both empirical expressions. This is 
attributed to the development of equation (22) being 
based on multidimensional heat flow. The Koh- 
Fortini correction slightly underpredicts the effect 

l.O( 

5 0.9c 
I 

b 
; 
IL” 
0’ .- 
; 

E 0.8C 
s 
x 
C 
6 
b 
a 

O.?C 

C 

Modified Loeb. Eq. (26) 

(1.7<aC2.5) 

-- This Paper - Eq (22) 

- -- Kompf and Karsten - Eq. (24) 

......“.. Peddicord - Eq. (25) 

-.- Koh and Fortini - Eq.(28) 

I I I I I 

1 0.02 0.04 0.06 0.08 0.10 1 
Fractional Porosity - p 

z 
< 

/ 
/ 
‘. 

3.12 

FIG. 4. Comparison of several porosity correction formulas 
with the modified Loeb expression. 

I.OC 

0.70 

Maxwell-Eucken, Eq.(27 

o.o~p<o.l. 0.5 

‘.., 

- - This Paper - Eq. (22) “.‘..., 

- -- Kompf and Korsten - Eq (24) ‘..,, 

““““‘. Peddicord - Eq (25) 

-.- Koh and Fortini - Eq. (28) 

I I I I I 
0.00 0.02 0.04 0.06 0.08 0. IO 0.12 

Fractional Porosity - p 

FIG. 5. Comparison of several porosity correction formulas 
with the Maxwell-Eucken expression. 

of porosity in this range. In addition, an artifact of 
the representation in equation (28) results in a curve 
with slope of increasing absolute value. All other 
porosity correction formulas examined, both empiri- 
cal and analytical, had slopes either constant or 
decreasing in magnitude. 

It is often necessary to estimate the thermal con- 
ductivity in materials with porosities greater than 12%. 
Figure 6 compares equation (22) with the analytical 
correction formulas at higher porosities. It is noted 
that for very porous materials, the equation derived in 
this paper eventually approaches the one-dimensional 
analytical derivation for a spherical pore given by 
Peddicord [7]. Within the context of the unit cell 
representation, this indicates that as the pore becomes 
very large the heat cannot flow as readily around the 
pore and the problem is well approximated by the 
one-dimensional approach. At high porosities, how- 
ever, equation (22) yields higher conductivities than 
the Koh-Fortini model, equation (28). 

4. CONCLUSIONS 

In this paper the three-dimensional analytical tem- 
perature solutions for a sphere occupying a cubical 
unit cell are presented in detail. A derived porosity 
correction formula generally shows good agreement 
with empirical expressions. In addition, the formula 
derived here may be used to estimate thermal con- 
ductivities at higher porosities beyond the range of 
validity of most empirical expressions. 
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CONDUCTION THERMIQUE DANS DES SPHERES ASSEMBLEES EN UN ARRANGEMENT 
CUBIQUE REGULIER ET INFINI 

R&urn6 - Les solutions permanentes des temperatures sont considerees pour un arrangement cubique de 
spheres. On suppose que le transfert de chaleur est par conduction et que les proprietes physiques sont 
constantes. Le probleme est trait6 pour un cube unitaire contenant une sphere au centre. Du fait de la 
symetrie, le cube est subdivisi en un dibdre representant la cellule unitaire. La solution analytique est obtenue 
pour la temperature en appliquant les conditions de continuite aux limites. Dans le cas ou les spheres 
reprisenteraient la porosite dans un solide, on obtiendrait une correction pour la conductivitt thermique 
sous la forme 

Oli 

f(p) = e-2.‘4P 

= 0.92 - 1,34p 

P= porosite, 
f(p) = facteur de correction de porosite, f (p) < 1. 

0 < p < 0,30 

0,30 < p < 0,50 

WARMELEITUNG EINER UNENDLICHEN REGELMiiSSIG ANGEORDNETEN KUBISCHEN 
KUGELPACKUNG 

Zusammenfassung - Es werden Losungen fur die Temperaturverteilung einer unendlichen kubischen 
Kugelpackung im stationaren Fall gesucht. Der Warmetransport erfolgt durch Leitung; die Stoffwerte 
werden als konstant vorausgesetzt. Das Problem wird wie ein Einheitswiirfel mit einer Kugel im Mittelpunkt 
behandelt. Aus Symmetriegriinden wird der Wiirfel weiter in einen Keil unterteilt, der die Einheitszelle 
darstellt. Durch die Anwendung von Kontinuitats- und Randbedingungen werden die analytischen 
Losungen fur die Temperaturverteilung erhalten. Fiir den Fall, dal3 die Kugel einen Hohlraum innerhalb 
eines Festkorpers darstellt, wird ein Porositiitskorrekturfaktor der Warmeleitfahigkeit in der folgenden 
Form erhalten : 

f(p) = e-2.14p; 0,O < p c: 0,30 

= 0,92 - 1,34p; 0,30 < p < 0,50. 

Dabei ist p das Porositltsverhaltnis und f (p) der Porositats-Korrekturfaktor, wobei f (p) I 1 gilt. 
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I-EllJlOl-lPOBO~HOCTb 6ECKOHEYHOti KYEikiYECKOR OEJ-IACTM, 
COCTOClUEn M3 CQEP 

Atmmauna - nony9esbI petuemn 3aAaw o TeMnepaTyp-e ana 6eCKOHeqHOfi Ky6wiecKoB o6nacm, 
COCTOSNIleti 113 C@ep. TennonepeHoc OCyIUeCTBJISleTCl Tel-IJIOIIPOBOAHOCTbIO W CBOtiCTBa CYHTBkOTCff 

nOCTORHHbIMH. B 3aAa'ie PaCCMaTpHBaeTCSl eAHHWiHbIii Ky6,COJIepXaWifi C$epy. B Cuny CHMMeTpuu 
~y6 nanee nonpasnenrercn Ha Knmi, npencTaenrmuuiii co6oA emieawyro nqelry. AHanemqecKue 
~UIeHWl AJIS TeMnepaTypbI nOJIy'leHb1 UyTeM HCnOJIb30BaHHI yCAOBd CnJIOLUHOCTW H FpaHWHbIX 

ycnoauk Ann cnyqaa, Korea c+epa npencrasnreT co608 nopec-ryw wieiKy B TBEPAOM Tene, nonyqeHo 
COOTHOUleHBe MexAy IlOpHCTOCTbEO W TeIlJIOtIPOBOAHOCTbK),HMeIOlUee WA: 

f(p)= eF2.14p 0.0 <p < 0.30 

= 0.92 - I .34p 0.30 < p < 0.50 

me p- KOHUeHTpaUHn nOp 

f(p)- nOFIpaBO',HbIi? KO3~~sUaeHT,yqeTbIBa~omae nOpHCTOCTbf(p)I 1 


